
Toward High-quality Few-shot Font Generation with Dual Memory

Junbum Cha
Bado Lee

Sanghyuk Chun
Seonghyeon Kim

Gayoung Lee
Hwalsuk Lee

Clova AI Research, NAVER Corp.
{junbum.cha, sanghyuk.c, gayoung.lee, bado.lee, kim.seonghyeon, hwalsuk.lee}@navercorp.com

Abstract

Generating a new font library is a very labor-intensive
and time-consuming job for glyph-rich scripts. Despite the
remarkable success of existing font generation methods,
they fail to capture detailed styles with a few samples. In
this paper, we focus on compositional scripts, a widely used
letter system in the world, where each glyph can be decom-
posed by several components. By utilizing the composition-
ality of compositional scripts, we propose a novel font gen-
eration framework, named Dual Memory Font Generation
Network (DM-Font), which enables us to generate a high-
quality font library with only a few samples. We employ
dual memory components in the generator to take advan-
tage of the compositionality. In the experiments on Korean-
handwriting fonts, we observe that our method generates a
significantly better quality of samples with faithful styliza-
tion compared to the state-of-the-art generation methods in
quantitatively and qualitatively.

1. Introduction

Advances of web technology lead people to consume
more and more text content on the web instead of their
handwriting. Meanwhile, designing a new font style, such
as personalized handwriting, is getting important for a bet-
ter user experience. However, because traditional methods
to make a font library heavily rely on expert designers by
manually design each glyph, creating a font library is ex-
tremely expensive for glyph-rich scripts such as Chinese
(more than 50, 000 glyphs) and Korean (11, 172 glyphs).

Several recent studies attempt to generate a font set us-
ing only a few samples [4, 5, 1, 3]. Despite their successful
few-shot generation performances on in-distributed styles,
existing few-shot font generation methods often fail to gen-
erate high-quality font library using unseen style few-shot
samples. Example failure modes of existing few-shot meth-
ods are reported in Figure 1 and the experiment section. We

�� 	�� ���
 ����� ��� �� 	�� ���
 ����� ���

Figure 1: Few-shot font generation results. While pre-
vious few-shot font generation methods (AGIS [1], FU-
NIT [2], and EMD [5]) are failed to generate unseen font,
our model successfully transfer the font style and details.

solve this problem by introducing an inductive bias based
on inherent glyph characteristics into the model architecture
and optimization objective.

In this paper, we focus on a famous family of scripts,
called compositional scripts, which are composed of a com-
bination of sub-glyphs or components. For example, the
Korean script has 11,172 valid glyphs with only 68 com-
ponents. These compositional scripts account for 24 of
the top 30 popular scripts, including Chinese, Hindi, Ara-
bic, Korean and so on. Our framework for the few-shot
font generation tasks explicitly utilizes the compositional-
ity to more efficient and effective font generation. The pro-
posed model, named Dual Memory Font Generation Net-
work (DM-Font), learns the global combination recipe and
the local component-wise styles from data. Unlike previous
methods, we let DM-Font directly utilize local component-
wise information from compositionality. In particular, we
employ the dual-memory structure (persistent memory and
dynamic memory) to efficiently capture the global glyph
structure and the local component-wise styles. This strategy
enables us to generate a new high-quality font library with
only a few samples, e.g., 28 samples for Korean. We val-
idate our framework quantitatively and qualitatively using
the Korean handwritten fonts. Our experiment results show
both quantitatively better visual quality in various metrics
and qualitatively being preferred in the user study.

1



Dynamic

Memory

Memory Addressor 𝑓𝑑

Persistent

Memory

ො𝑦

𝑥

돌 매 밤
𝐺(𝑦)

댐
Enc Dec

Enc

Encoding Stage Decoding Stage

Cls

component

label 𝑢

𝑦

Figure 2: Architecture overview of DM-Font. In the en-
coding stage, the memory addressor places the encoded ref-
erence features into the dynamic memory using their cor-
responding labels. For decoding, the features saved in the
dynamic and persistent memories are loaded and fed to the
decoder to generate the target image.

2. Dual Memory Font Generation Network
In this section, we introduce a novel architecture, Dual

Memory Font Generation Network (DM-Font), which uti-
lizes the compositionality of a script by the augmented dual
memory structure. DM-Font disentangles global composi-
tion information and local styles, then writes them into
persistent and dynamic memory, respectively. It enables to
make a high-quality full glyph library only with very few
references.

2.1. Architecture Overview

We illustrate the architecture overview of DM-Font in
Fig. 2. Encoder Enc disassembles a source glyph into the
several components and encodes to the component features.
The encoded component-wise features are written into dy-
namic memory.

We employ two memory modules, where persistent
memory is a component-wise learned embedding that rep-
resents the intrinsic shape of each component and the global
information of the script such as the compositionality, while
dynamic memory stores encoded component features of
the given reference glyphs. Hence, persistent memory cap-
tures the global information of sub-glyphs independent of
each font style, while encoded features in dynamic memory
learn unique local styles depending on each font.

Memory addressor provides the access address of both
dynamic and persistent memory based on the given char-
acter label yc. We use pre-defined decomposition function
fd : yc 7→ {uci | i = 1 . . .Mc} to get the component-wise
address, where uci is the label of i-th component of yc, and
Mc is the number of sub-glyphs for yc.

The component-wise encoded features for the reference
x̂, whose character label is ŷc and style label is ŷs, are

stored into dynamic memory during the encoding stage. In
our scenario, the encoder Enc is a multi-head encoder, and
ŷc can be decomposed by fd(ŷc) to sub-glyph labels ûci .
Hence, the features in dynamic memory at address (ûci , ŷs),
DM(ûci , ŷs) can be computed by Enci(x̂), where i is the
index of the component type of ûci , and Enci is the encoder
output corresponding to i.

In the decoding stage, the decoder Dec generates a tar-
get glyph G(yc, ys) with the target character yc and the ref-
erence style ys by reading the target component-wise fea-
tures from the dynamic memory DM and the persistent
memory PM as the following:

G(yc, ys) = Dec
([
DM(uci , ys), PM(uci ) | uci ∈ fd(yc)

])
,

(1)
where [x0, . . . , xn] refers to the concatenation operation.

For the better generation quality, we also employ the dis-
criminator and the component classifier. The discriminator
adopts multitask architecture [2] for the font style and char-
acter content conditioning. We further use the component
classifier Cls to ensure the model to fully utilize the com-
positionality. The component classifier provides additional
supervision to stabilize the training process.

2.2. Learning

We train DM-Font from font sets (x, yc, yf ) ∼ D, where
x is a target glyph image, yc and yf is a character and
font label, respectively. During the training, we assume that
different font labels represent different style, i.e., we set
ys = yf in equation (1). Also, for the efficiency, we only en-
code a core component subset to compose the target glyph
x into the dynamic memory, instead of the full component
set. For example, the Korean script has the full component
set with size 68, but to construct a single character, only 3
components are required.

We employ four objectives to train DM-Font: adversarial
loss Ladv for the better quality of generated images, L1 loss
Ll1 to add supervision from the ground truth target glyph,
feature matching loss Lfeat to stabilize the training better,
and component-classification loss Lcls to let the model to
fully utilize the compositionality:

min
G,C

max
D
Ladv(font) + Ladv(char)+

λl1Ll1 + λfeatLfeat + λclsLcls,
(2)

where λl1, λfeat, λcls are control parameters for the impor-
tance of each objective compared to the adversarial loss.
The component-classification objective aims to correctly
classify the component label of encoded features from the
reference and synthesized glyphs. This additional supervi-
sion leads the model to disassemble and assemble the com-
ponents accurately.



3. Experiments
In this section, we empirically validate DM-Font on Ko-

rean scripts and compare it with state-of-the-art few-shot
font generation methods.

3.1. Datasets

To validate the models, we build handwriting dataset
using 86 Korean-handwriting fonts1 which are refined by
the expert designer. We train the models using 80% font sets
and 90% characters, then validate the models on the remain-
ing 20% font split. Also, to measure the generalizability to
the unseen characters, we separately evaluate the models on
the seen and unseen character sets for the valid font split.

We also build unrefined dataset from 88 non-expert
Koreans, letting each applicant write 150 characters. This
dataset is extremely diverse and not refined by expert de-
signer different from the handwriting dataset. We use the
unrefined dataset as the validation of the models trained on
the handwriting dataset, i.e., the unrefined dataset is not vis-
ible during the training. In our experiments, we measure the
robustness to out-of-distributed styles for each few-shot font
generation methods. We generate a target font library via 30
reference samples for both datasets.

3.2. Comparison Methods and Evaluation Metrics

We compare our model with state-of-the-art few-shot
font generation methods, including EMD [5], AGIS-Net [1],
and FUNIT [2]. Here, we slightly modified FUNIT, origi-
nally designed for unsupervised translation, by changing its
reconstruction loss to L1 loss with ground truths and con-
ditioning the discriminator to both contents and styles. We
exclude the methods which are Chinese-specific [4] or not
applicable to glyph-rich scripts [3]. Every competitor uses
identical 30 style reference glyphs.

For the disentangled quantitative evaluation, we train a
content classifier and a style classifier using character and
font labels. We use top-1 accuracy (Acc) and mean FID
(mFID) from the classifiers as evaluation metrics in addition
to the multi-scale structural similarity (MS-SSIM) index.

3.3. Main Results

The main quantitative results on the handwriting dataset
are reported in Table 1. In the experiments, DM-Font re-
markably outperforms the previous methods in all evalua-
tion metrics, especially on style-aware benchmarks. Specif-
ically, baseline methods show slightly worse content-
aware performances on unseen characters than seen char-
acters, e.g., AGIS-Net shows worse content-aware accu-
racy (98.7 → 98.3) and mFID (23.9 → 25.9) in Ta-
ble 1. In contrast, DM-Font shows better generalizability
to the unobserved characters during the training. Since our

1We collect public fonts from http://uhbeefont.com/.

Table 1: Quantatitive Evaluation on the handwriting
dataset. We evaluate the methods on the seen and unseen
character sets. Higher is better, except mFID.

Pixel Content Style
MS-SSIM Acc(%) mFID Acc(%) mFID

Evaluation on the seen character set during training

EMD [5] 0.361 80.4 138.2 5.1 134.4
FUNIT [2] 0.369 94.5 42.9 5.1 146.7
AGIS-Net [1] 0.399 98.7 23.9 8.2 141.1
DM-Font (ours) 0.457 98.1 22.1 64.1 34.6

Evaluation on the unseen character set during training

EMD [5] 0.362 76.4 155.3 5.2 139.6
FUNIT [2] 0.372 93.3 48.4 5.6 149.5
AGIS-Net [1] 0.398 98.3 25.9 7.5 146.1
DM-Font (ours) 0.455 98.5 20.8 62.6 40.5

EMD

Ours

GT

AGIS-Net

FUNIT

(a) Seen character set during training.

EMD

Ours

GT

AGIS-Net

FUNIT

(b) Unseen character set during training.

Figure 3: Qualitative comparison on the handwriting
dataset. We show insets of baseline results (green box),
ours (blue box) and ground truth (red box). In particular, for
the unseen character sets, ours successfully transfers the de-
tailed reference style, while baselines fail to generate glyphs
with the detailed reference style.

model interprets a glyph at the component level, the model
easily extrapolates the unseen characters from the learned
component-wise features stored in memory modules. More-
over, our method shows significant improvements in style-
aware metrics. Our model achieves 62.6% accuracy while
other methods show much less accuracy, e.g., about 5%.
Likewise, DM-Font shows dramatic improvements in mFID
as well as the accuracy measure.

We also provide visual comparisons in Figure 3, which
contain various challenging fonts including thin, thick and

http://uhbeefont.com/


Table 2: User study results on the unrefined dataset.
Each number is the preferred model output out of 3, 420
responses.

EMD FUNIT AGIS-Net DM-Font

Content preserving 1.33% 9.17% 48.67% 40.83%
Stylization 1.71% 8.14% 17.44% 72.71%
Most preferred 1.23% 9.74% 16.40% 72.63%

curvy fonts. Our method generates glyphs with consistently
better visual quality than the baseline methods. EMD [5]
often erases thin fonts unintentionally, which causes low
content scores compared to the other baseline methods. FU-
NIT [2] and AGIS-Net [1] accurately generate the content
of glyphs and captures global styles well including overall
thickness and font sizes. However, the detailed styles of the
components in their results look different from the ground
truths. Compared to the baselines, our method generates the
most plausible images in terms of global font styles and de-
tailed component styles. These results show that our model
preserves details in the components using the dual memory
and reuse them to generate a new glyph.

3.3.1 User Study

We conduct a user study to further evaluate the methods
in terms of human preferences using the unrefined dataset.
Some example generated glyphs are illustrated in Figure 4.
Users are asked to choose the most preferred generated sam-
ples in terms of content preserving, faithfulness to the ref-
erence style, and personal preference. We collect a total of
3, 420 responses from 38 users using 90 preference ques-
tions. The results are shown in Table 2, which present simi-
lar intuitions with Table 1; AGIS-Net and our method are
comparable in the content evaluation, and our method is
dominant in the style preference.

4. Conclusion
Previous few-shot font generation methods often fail

to generalize to unseen styles. In this paper, we propose
a novel few-shot font generation framework for compo-
sitional scripts, Dual Memory Font Generation Network
(DM-Font). Our method effectively incorporates the prior
knowledge of compositional script into the framework via
two external memories: the dynamic memory and the per-
sistent memory. The experimental results showed that the
existing methods fail in stylization on unseen fonts, while
DM-Font remarkably outperforms the existing few-shot
font generation methods. Empirical evidence support that
our framework lets the model fully utilize the composition-
ality so that the model can produce high-quality samples
with only a few samples.

EMD

Ours

GT

AGIS-Net

FUNIT

EMD

Ours

GT

AGIS-Net

FUNIT

EMD

Ours

GT

AGIS-Net

FUNIT

EMD

Ours

GT

AGIS-Net

FUNIT

EMD

Ours

GT

AGIS-Net

FUNIT

Figure 4: Samples for the user study. The unrefined dataset
is used. Ours shows better stylization performance than
baseline methods.

References
[1] Yue Gao, Yuan Guo, Zhouhui Lian, Yingmin Tang, and Jian-

guo Xiao. Artistic glyph image synthesis via one-stage few-
shot learning. ACM Transactions on Graphics (TOG), 2019.
1, 3, 4

[2] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsupervised
image-to-image translation. In IEEE International Confer-
ence on Computer Vision (ICCV), 2019. 1, 2, 3, 4

[3] Akshay Srivatsan, Jonathan Barron, Dan Klein, and Taylor
Berg-Kirkpatrick. A deep factorization of style and structure
in fonts. In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2019. 1, 3

[4] Danyang Sun, Tongzheng Ren, Chongxuan Li, Hang Su, and
Jun Zhu. Learning to write stylized chinese characters by
reading a handful of examples. In International Joint Con-
ference on Artificial Intelligence (IJCAI), 2018. 1, 3

[5] Yexun Zhang, Ya Zhang, and Wenbin Cai. Separating style
and content for generalized style transfer. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
1, 3, 4


